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A nonlinear 0/1 mized integer programming model
is presented for a constrained discriminant anal-
ysis problem. The model enables controlling
misclassification probabilities by placing restric-
tions on the numbers of misclassifications al-
lowed among the training entities and incorporat-
ing a “reserved judgment” region to which entities
whose classifications are difficult to determine may
be allocated. A linearization of the model is given,
and preliminary numerical results for two medical
and one non medical domain are presented.

INTRODUCTION

A fundamental problem in discriminant analysis
concerns the classification of an entity into one
of G (G > 2) a priori, mutually exclusive groups
based upon specific measurable features of the en-
tity. Typically, a discriminant rule is formed from
data collected on a sample of entities for which
the group classifications are known. Then new en-
tities, whose classifications are unknown, can be
classified based on this rule. Such an approach
has been applied frequently in medical diagnoses
where often a definitive classification of a patient
can be made only after exhaustive physical and
clinical assessments, after surgery, or perhaps even
after the patient dies and an autopsy is performed.
Hence, tests based on relatively inexpensive and
unobtrusive clinical and laboratory type observa-
tions are used to aid in a diagnosis [1].

Most work in discriminant analysis has focused
on forced discrimination rules; that is, rules that
definitely classify a given entity into one of the
G a priori groups. A forced rule is character-
ized by a partition {R;,...,Rg} of the feature
space, where an entity with feature vector z is
classified as coming from group g if, and only if,
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z€ Ry, g=1,...,G. Forced discrimination is an
effective approach for groups that are reasonably
well-separated on the feature variables. However,
if the groups are not well-separated, then apply-
ing a forced rule may result in a high number of
misclassifications. In such cases, it may be de-
sirable to form a discrimination rule that allows
less specific classification decisions — or even non
classification of some entities — in order to sat-
isfy constraints on the misclassification probabil-
ities. Quesenberry and Gessaman [2] proposed a
general model whereby an entity may either be
classified into some subset of the G groups (i.e.,
rule out membership in the remaining groups), or
be placed in a “reserved judgment” category. An
entity is considered misclassified only when it is
assigned to a nonempty subset of groups not con-
taining the true group of the entity. Discrimina-
tion rules of this type are referred to as partial
or constrained discrimination rules. While such
a general model is intuitively appealing, one dis-
advantage is that when G > 3 there is no obvious
definition of optimality among any set of rules sat-
isfying the constraints.

A simplified version of the above model involves
only incorporating the reserved judgment cate-
gory. Thus, an entity is either classified as coming
from one of the G a priori groups, or it is placed in
the reserved judgment category. A discrimination
rule of this type, sometimes referred to as a rule
with a “reject” option, is characterized by a parti-
tion {Ro, Ry,..., Rg} of the feature space, where
Ro denotes the reserved judgment region. The re-
served judgment option allows classification of an
entity to be postponed until further information is
available (i.e., information other than that associ-
ated with the k features on which the discrimina-
tion rule is based).



It is much easier to devise reasonable defini-
tions of optimality for this model than for the gen-
eral model. For example, whereas for the general
model, maximizing the probability of correct clas-
sification would result in the useless rule of classi-
fying every entity into the subset consisting of all
the groups, here such an optimization strategy is
meaningful.

Previous work on partial discriminant analysis
has focused mainly on the two-group model. In
this case the general model is equivalent to the
simplified version, and numerical approaches for
obtaining optimal discrimination rules have been
proposed (e.g., see Anderson (3], Habbema, Her-
mans and Van Der Burgt [4], and Broffit, Randles
and Hogg [5]). McLachlan [6] summarizes the re-
search on the two-group case.

For three or more groups, most work has been
on rules of the more general type, where there
is no clear definition of optimality. For instance,
some ad hoc nonparametric approaches have been
suggested by Quesenberry and Gesseman [2] and
Ng and Randles [7]. However, very little work
has been published on numerical techniques for
constructing constrained rules for the simplified
model for the three-or-more group case. Ander-
son [3] published an important result on the form
of optimal rules of this type. However, to the au-
thors’ knowledge, no computational method based
on Anderson’s result has appeared in the litera-
ture.

In this paper we present an optimization model
(specifically, a nonlinear 0/1 mixed integer pro-
gram) based on Anderson’s result that is appli-
cable to the simplified model with any number
of groups. The 0/1 indicator variables are used
to represent if a training entity is assigned to a
given region, and the model seeks to maximize
the number of correct classifications of the training
entities while placing upper bounds on the num-
bers of misclassifications. A heuristic linearization
for the nonlinear model is suggested, and prelim-
inary numerical results for the linearized model,
using two medical and one non medical dataset
obtained from the Machine Learning Database
Repository at the University of California at Irvine
[8], are presented.

OPTIMIZATION MODEL

Under quite general assumptions, Anderson [3]
showed that an optimal partition for a discrimi-
nant rule with a reject option, where one is seek-
ing to maximize the probability of correct classifi-
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cation while maintaining specified bounds on the
misclassification probabilities, is of the form

max

By={z:L,(2) = he{o,1,...

& Ln(z)},

for g = 0,...,G. Here, Lo is the function that
is identically zero, and the functions L, h =
1,...,G, are of the form

Li(z) = mafa(z) — ) Anfi(2),
iZh

where f,, h = 1,...,G, are appropriate group
conditional density functions; 73, h = 1,...,G,
are prior probabilities for the groups; and the A;;’s
are nonnegative parameters to be determined.

Assume now that we are given a training sam-
ple of N entities whose group classifications are
known, and for which measurements on k feature
characteristics have been made. Say n, of the
training entities are in group g, where 25:1 ng =
N; and let the k-dimensional vectors z97, ¢ =
1,...,G, j =1,...,ng4, contain the measurements
on the k characteristics. Using this data, one can
compute estimates fh for the group conditional
density functions fi, h = 1,...,G (e.g., see [6]).
Also, estimates %, of the prior probabilities =,
h = 1,...,G, must be made. Once these esti-
mates are made, an appropriate set of \;5’s can
be obtained by solving the nonlinear 0/1 mixed
integer program (MIP) given below.

In the MIP model, as a surrogate to maximizing
the probability of correct classification, the objec-
tive is to maximize the number of correct classifi-
cations of the given N training entities. Similarly,
the constraints on the misclassification probabili-
ties are modeled by ensuring that the number of
group g training entities in region R; (h # g) is
less than or equal to a pre-specified percentage,
Prg (0 < prg < 1), of the total number, ny, of
group g entities. For notational convenience, let
G=A{1,...,G},and Ny = {1,...,n,} for g € G.
Then the mixed integer program can be written
as:

maximize Z Z Uggj

JEGjEN,
subject to
Lagi = #nfa(29) = ) dinfi(2¥) (1)
i€G
iZh



G} (2)

yg; = max{0, Lpgi :h=1,...

Yoj — Lggi < M(1—ug;) (3)

Yoi — Lngi > €(1— ung;) (4)
Z Ungi < PhgNy ()
JEN,

Ygi 20, Ain >0, upg; € {0,1}. (6)
The continuous variables Lyy; and y,;, and con-
straints (1) and (2) capture the essence of a dis-
cretized version of Anderson’s result. In partic-
ular, Ly,; represents the value of the function
L;, when evaluated at the training point 9/, and
yg; Tepresents the maximum of {Ly(z%) : h €
{0,1,...,G}}. The 0/1 variables u p,; are used to
indicate whether or not z97 lies in region Rj; i.e.,
whether or not the jth entity from group g is al-
located to group k. In particular, constraints (3),
together with the objective, force uyy; to be 1 if,
and only if, the jth entity from group g is correctly
allocated to group g; and constraints (4) and (5)
ensure that at most pyyn, group g entities are al-
located to group h, h # g. Though the parameters
M and € are extraneous to the discriminant analy-
sis problem itself, they are needed in the model in
order to control the indicator variables ujg;. The
intention is for M and € to be, respectively, large
and small positive constants.

The nonlinearity of constraint (2) makes it im-
practical to solve the above optimization model
directly. Although there are a variety of com-
mercially available optimization solvers that can
solve mixed integer linear programs, none have the
capability of directly dealing with nonlinear con-
straints of the form (2). One heuristic approach to
linearizing the model is to replace constraint (2)
with the constraints yg; > Lpgj, h =1,...,G, and
include penalty terms in the objective function. In
particular, our linearized model has the objective

maximize Z Z augg; — Z Z BYgj,

JEGJEN, JEGIEN,

where o and B are positive constants. This lin-
earized model is heuristic in that there is nothing
to force y,; = max{0,Lpy; : h=1,...,G}. How-
ever, since in addition to trying to force as many
Ugg;’s to one as possible, the objective also tries
to make the y,;’s as small as possible, there is a
tendency for the optimizer to drive y,; towards
max{0, Lnz : h=1,...,G}. We remark that the
o’s and (’s could be stratified by group (i.e., intro-
duce possibly distinct ay, B, g € G) to model the
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relative importance of certain groups to be cor-
rectly classified. In our numerical tests, we set the
weights to be the same for every group, assuming
equal importance of each group.

NUMERICAL RESULTS

Ten-fold cross-validation was performed on
datasets obtained from the machine learning
database repository at the University of California
at Irvine [8]. In ten-fold cross-validation, a dataset
is randomly partitioned into ten subsets of equal
size. Ten trials are then run, each of which involves
a training set made up of nine of the subsets and
a test set made up of the remaining subset. The
classification rule obtained via a given training set
is applied to the associated test set to determine
the number of test points correctly classified, the
number misclassified, and (in the present study)
the number allocated to the reserved judgment re-
gion. Averages are computed from the ten trials
to obtain unbiased estimates of the expected per-
centages of each of these three possible outcomes.

We focused on three datasets from the UCI
repository: iris, new-thyroid, and heart-disease.
Iris is a classic dataset used to test discrimination
techniques. The data consists of measurements of
the sepal length and width and petal length and
width of fifty plants for each of three types of iris.
Using all four measurements, the three groups are
reasonably well-separated. However, when only
the measurements on the sepal length and width
are used, there is more overlap among the groups,
and as such the dataset is a good test bed for a
partial discrimination technique.

New-thyroid consists of data used in trying to
predict the state of the thyroid gland. Three di-
agnostic classes are specified: euthyroidism, hy-
pothyroidism and hyperthyroidism. Five labora-
tory measurements for 215 patients are provided:
total serum thyroxin, as measured by the isotopic
displacement method; total serum triiodothyro-
nine, as measured by radioimmunoassay; T3-resin
uptake (a percentage); basal thyroid-stimulating
hormone (TSH), as measured by radicimmunoas-
say; and the maximal absolute difference of TSH
after injection of 200 micrograms of thyrotropin-
releasing hormone, as compared to the basal value.
Coomans, Broeckaert, Jonkheer, and Massart [9]
used this data in a study comparing sixteen dif-
ferent forced discrimination techniques. However,
their study only focused on two-group discrimi-
nation problems (i.e., euthyroidism vs. hypothy-
roidism, and euthyroidism vs. hyperthyroidism),
8o the results are not directly comparable to the



results herein.

The heart-disease database consists of data per-
taining to angiographic coronary disease. There
are five diagnostic categories, ranging from 0 to 4,
graded by the percentage of the narrowing of the
diameter of a major blood vessel. Although there
are 76 raw attributes, in published experiments to
date [10, 11], only 13 of the 76 attributes have been
used as predictive variables in deriving discrimi-
nant rules. These include age, sex, chest pain type,
systolic blood pressure, serum cholesterol, fasting
blood sugar, resting electrocardiographic results,
maximum heart rate achieved, exercise induced
angina, ST segment depression induced by exer-
cise relative to rest, slope of the peak exercise ST
segment, and the number of major vessels colored
by fluoroscopy for coronary calcium. Moreover,
efforts have concentrated on simply attempting
to distinguish between presence (diagnostic values
1,2,3,4) and absence (diagnostic value 0) of dis-
ease. Although data was collected at four sites
(the Cleveland Clinic Foundation; the Hungarian
Institute of Cardiology; the V.A. Medical Center
in Long Beach, California; and the University Hos-
pital in Zurich, Switzerland), there is a consider-
able amount of missing data from all sites but the
Cleveland Clinic Foundation, and only data col-
lected at this site have been utilized for discrim-
ination purposes in past studies. Likewise, our
numerical experiments only utilize the Cleveland
database. Unlike previous uses, however, we at-
tempt to discriminate between all of the five diag-
nostic categories.

Preliminary numerical tests for the proposed
discrimination technique are reported below. The
goal of these preliminary tests is simply to obtain
raw measurements on the performance of the tech-
nique. Further numerical work is currently under-
way to compare the technique with forced discrim-
ination procedures, as well as with an alternative
linearization of the nonlinear model.

Our tests were carried out with the allowed mis-
classification levels set at 15% (pny = .15); the ex-
traneous parameters M and e set at 100 and 0.01,
respectively; and objective function weights set to
a = 2 and § = 3. Also, we used normal-model
group-conditional densities (e.g., see [6]) and equal
prior probabilities for all groups.

It should be noted that, although there are com-
mercially available optimization software packages
capable of solving mixed integer linear programs
(e.g., [12]), such problems are, in general, very dif-
ficult to solve. Because of its availability to us,
we used a state-of-the-art research code [13] when
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running our ten-fold tests. However, as is com-
mon when applying optimization solvers to large-
scale real world MIP instances, we terminated the
solver after the first feasible solution satisfying
constraints (1)-(6) was obtained. This typically
occurred within one second of CPU time running
on a single-processor Sun Sparc 20.

Once an initial feasible solution is obtained, the
associated A;;’s are used to define the functions
Ly, h = 1...,G, which in turn are used to test
membership of the test set entities in the regions
R,, g = 1,...,G. Although the current values of
the 0/1 indicator variables accurately reflect the
membership of most of the training entities, the
heuristic nature of the model leaves open the pos-
sibility that some of the 0/1 variables may have the
wrong value. Hence, we also test the training set
entities against the functions Ly, h = 1,...G to
determine to which region each entity is assigned.

The results of our experiments are summarized
in Tables 1 and 2 below. For each dataset, we
record the percentage of entities correctly classi-
fied, the percentage classified in the reserved judg-
ment region, and the percentage misclassified, as
averaged over the ten trials. We include results
for both iris (with all four feature measurements
used for discrimination purposes) and sepal (the
iris data, when only sepal length and width are
used) to observe how the model performs on both a
known well-separated dataset and on one for which
the groups are known to be mixed.

Table 1. Training set results

Dataset Correct Reserved  Misclass.
Tris 98.5 0.2 13
Sepal 79.1 7.2 13.6
New-thyroid 85.5 14.3 0.2
Heart-disease 70.3 18.2 11.5
Table 2. Test set results
Dataset Correct  Reserved  Misclass.
Ins 95.3 1.3 3.3
Sepal 66.1 16.1 17.9
New-thyroid 81.8 17.3 0.9
Heart-disease 42.5 25.0 32.5

In light of the fact that the iris data is known
to be well-separated, the results obtained for this
dataset are what one would hope for: very high
correct classification rates for both the training
set and the test set, and very little misclassifica-
tion. The reserved judgment region had little con-
sequence in this case. Indeed, for a dataset that is
fairly-well separated, a forced rule is adequate.

The results for sepal offer evidence that the pro-
posed optimization model holds promise as a vi-
able approach to constrained discrimination for
cases when the groups are mixed. The technique



performed quite well on the training data, though
less so on the test data.

New-thyroid has a high rate of correct classifi-
cation and a low rate of misclassification for both
the training set and the test set. Moreover, the
reserved judgment category captures a significant
portion of the entities.

The results for heart-disease are mixed. Al-
though the training set results are reasonably
good, there is a high misclassification rate on the
test set data. This might be indicative of “over
training.” With 13 feature variables used on a
dataset consisting of approximately 300 patients,
and for which the smallest group (diagnostic group
4) has only 13 patients, there could be a tendency
for the discriminant rules to over fit the training
data, and thereby be less accurate with new data.

Also, it is important to emphasize again that
the optimizer was halted after the first feasible so-
lution was found. Consequently, there is no guar-
antee that this solution is optimal. Although one
would expect that a true optimal solution to the
MIP would lead to a good approximation to the
optimal partition {Ry, ..., Rg}, the partition de-
fined by a suboptimal solution to the MIP may
very well be far from optimal. This observation
may contribute to the relatively poor performance
of the discriminant rules for heart-disease, and to
a lesser extent for sepal In order to determine
if this is indeed the case, the optimizer must be
allowed to run to optimality so that a direct com-
parison can be made between the two partitions.
Numerical work in this direction is currently being
conducted.

CONCLUSION

With the potential serious consequences of mis-
diagnoses, developing discrimination rules that in-
corporate a reserved judgment region is an av-
enue worth investigating. The optimization model
suggested herein is well founded on theoretical
grounds, and the preliminary numerical work
shows that it holds promise for being a viable ap-
proach to constrained discrimination when three
or more groups are involved.
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